Contour integrals.

Reminder:
- A function \(f \) defined in a punctured neighborhood of \(z_0 \) is said to have a pole at \(z_0 \) if \(\frac{1}{f(z)} \) is holomorphic in a full neighborhood of \(z_0 \) and has a zero at \(z_0 \).
- If \(f \) has a pole at \(z_0 \) then in a neighborhood of \(z_0 \) there exists a nonvanishing holomorphic function \(h \) and a unique \(n > 0 \) such that \(f(z) = \frac{h(z)}{(z-z_0)^n} \). The number \(n \) is called the order of the pole \(z_0 \).
- If \(f \) has a pole of order \(n \) at \(z_0 \) then \(f(z) = a_{-n}(z-z_0)^n + \ldots + a_{-1}(z-z_0) + g(z) \), where \(g \) is holomorphic in a neighborhood of \(z_0 \). Coefficient \(a_{-1} \) is called the residue of \(f \) at \(z_0 \):
 \[\text{Res}_{z=z_0} f(z) = a_{-1}. \]
- Let \(f \) be a continuous function in the closure of \(\Omega \subset \mathbb{C} \) and holomorphic in \(\Omega \) except for a finite number of poles \(z_k \in \Omega \). Then
 \[\oint_{\partial \Omega} f(z) \, dz = 2\pi i \sum_{k=1}^{n} \text{Res}_{z=z_k} f(z), \]
 where \(\partial \Omega \) is oriented such that domain \(\Omega \) is on its left.

1. Calculate residues at poles of \(f(z) \):
 - (a) \(f(z) = \frac{z^n}{(z^2+1)(z+1)^n} \);
 - (b) \(f(z) = z^{11}e^{1/z^2} \);
 - (c) \(f(z) = \frac{1}{z\sin z^2} \).

2. Calculate the following contour integrals:
 - (a) \(\oint_{|z|=3} \frac{dz}{(z-1)^n(1-\cos(z))} \);
 - (b) \(\oint_{|z|=7} \frac{1-\text{ch}(z)}{z^3+4z+2} \, dz \).

3. Calculate the integrals:
 - (a) \(\int_{-\infty}^{+\infty} \frac{x^2 \, dx}{(x^2+1)(x^2+2)} \);
 - (b) \(\int_{0}^{+\infty} \frac{x^n \, dx}{(x^2+a^2)^2}, \ a > 0; \)
 - (c) \(\int_{-\infty}^{+\infty} \frac{\cos x \, dx}{(x^2+4x+2)^2}. \)