Lozenge tilings on a cylinder

Marianna Russkikh

MIT

Based on joint work with A. Ahn and R. Van Peski.
Ordinary partition

\[\lambda = (\lambda_1 \geq \lambda_2 \geq \lambda_3 \ldots \geq 0) \]

\[\lambda_i = 0 \quad \text{for} \quad i \gg 0 \]

The partition \[\lambda = (8, 5, 4, 2, 2, 1) \]; \[\lambda \leftrightarrow \{\lambda_i - i + \frac{1}{2}\} \]
partition

lozenge tiling

empty room

Plane partition Skew plane partition Cylindric partition
Random tiling/partition

Uniform measure: uniformly random tilings.

\(q^{\text{vol}} \) measure: \(\mathbb{P}[\text{tiling}] \propto q^{\text{vol}(\text{tiling})}, 0 < q < 1 \)
Cylindric partition

Let $q^N = t \in (0, 1)$, q^{vol} measure on cylindric partitions: $\mathbb{P}(\lambda) \propto q^{\text{vol}}(\lambda)$.
Lozenge tilings on a cylinder

lozenge tilings of the cylinder \(= \) shifted cylindric partitions

shift-mixed \(q^{\text{vol}} \) measure: \(\mathbb{P}(\lambda, S) \propto (u^S q^{NS^2}) q^{\text{vol}(\lambda)}, \)

\(u > 0, \ S \text{ is a vertical shift of the wall-floor interface} \)
The height function $H(\tau, y)$ vanishes for all sufficiently negative y and $H(\tau, y) = y - S$ for all sufficiently large positive y.

The key questions: the large-scale behavior of

(a) the limit shape of the height function,
(b) fluctuations of the height function.
Limit shape

Let $q^N = t \in (0, 1)$

Theorem (Ahn, R., Van Peski '21)

The height function h_N of a q^vol-distributed cylindric partition of width $2N$ converges in probability to the following limit shape uniformly:

$$\frac{1}{N} h_N(N\tau, Ny) \rightarrow H(y) = \begin{cases} 0 & y \leq \frac{\log 2}{\log t}, \\ \int_{\log 2 \over \log t}^{y} \frac{2 \arctan(\sqrt{4t^2 - 2u - 1})}{\pi} \, du & y \geq \frac{\log 2}{\log t}. \end{cases}$$

- [Borodin '07] showed result on local statistics which also computes the limit shape; our only real input here is showing concentration.
- The shift-mixed q^vol measure has the same limit shape above, as the distribution of the shift is independent of the tiling and is finite-order independent of N.
Theorem (Ahn, R., Van Peski ’21)

The fluctuations of the height function of a q^{vol}-distributed cylindric partition converges on the liquid region to the Gaussian free field in the Kenyon-Okounkov complex structure.

Theorem (Ahn, R., Van Peski ’21)

The fluctuations of the height function of a shift-mixed q^{vol}-distributed cylindric tiling are given by the same Gaussian free field with an additional discrete Gaussian shift component.
Simple random walk

- Limit shape:
 As \(X, T \to \infty \), \(\frac{X}{T} = \text{const} \), \(\frac{Z_{sT}}{X} \to s \) uniformly over \(s \in [0, 1] \).

- Fluctuations:
 \(\frac{Z_{sT} - \mathbb{E}[Z_{sT}]}{C \sqrt{T}} \to B_s \), where \(B_s \) is a standard Brownian bridge.

 \[
 G(s, s') := \text{Cov}(B_s, B_{s'}) = \min(s, s')(1 - \max(s, s'))
 \]

 is the Green’s function for Laplacian \(\Delta = \frac{\partial^2}{\partial s^2} \) on \([0, 1]\) with zero Dirichlet boundary conditions.
Gaussian Free Field

The Gaussian free field ϕ on D is the random distribution such that pairings with test functions $\int_D f \phi$ are jointly Gaussian with covariance

$$\text{Cov} \left(\int_D f_1 \phi, \int_D f_2 \phi \right) = \int_{D \times D} f_1(z) G(z, w) f_2(w).$$

where ϕ is a conformally invariant random generalized function:

$$\Phi(z) = \sum_k \xi_k \frac{\phi_k(z)}{\sqrt{\lambda_k}},$$

[1d analog: Brownian Bridge]

where ϕ_k are eigenfunctions of $-\Delta$ on D with zero boundary conditions, λ_k is the corresp. eigenvalue, and ξ_k are i.i.d. standard Gaussians.

The GFF is not a random function, but a random distribution.

GFF is a Gaussian process on D with Green’s function of the Laplacian as the covariance kernel.
Conjecture [Kenyon-Okounkov ’05]
For lozenge tilings of simply connected planar regions, there exists a map ζ on liquid region L so that

$$\sqrt{\pi}(H(x^\delta, y^\delta) - \mathbb{E}[H(x^\delta, y^\delta)]) \to \Phi \circ \zeta(x, y)$$

where Φ is the GFF and ζ is a local diffeomorphism onto its image.

Theorem As mesh goes to zero, fluctuations of height \Rightarrow Gaussian Free Field on \mathbb{D} with zero boundary conditions.
Theorem (Kenyon-Okounkov '05)

In the liquid region (i.e. where $p_\triangle, p_\square, p_\Diamond > 0$), there exists a function $z(x, y)$ taking values in the upper half plane such that

$$\nabla \mathcal{H} = \frac{1}{\pi} (\arg z, - \arg(1 - z)) \quad \text{and} \quad \frac{-z_x}{1 - z} + \frac{z_y}{z} = 0.$$

Uniform measure: $\zeta = z$.

q^vol measure (volume-constrain): let $q = e^{-c\delta}$, then $\zeta = e^{cx} z$.
Known results

<table>
<thead>
<tr>
<th>Limit shape</th>
<th>Fluctuations</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cohn-Kenyon-Propp ’00] proved a.s. convergence to certain entropy-maximizers for uniformly random domino tilings of simply connected domains in \mathbb{R}^2.</td>
<td>Certain domains with no frozen regions (e.g. [Kenyon ’01], [R. ’18], [R. ’19]; [Kenyon ’08], [Berestycki-Laslier-Ray ’20]).</td>
</tr>
<tr>
<td>[Kenyon-Okounkov-Sheffield ’03] showed more generally (weighted doubly periodic bipartite dimer models on simply connected planar regions).</td>
<td>[Ahn ’20] q^vol plane partitions.</td>
</tr>
<tr>
<td>[Okounkov-Reshetikhin ’01] computed limit shape for q^vol ordinary plane partitions.</td>
<td></td>
</tr>
<tr>
<td>[Cerf-Kenyon ’01] Same limit shape for uniform measure on plane partitions of given volume.</td>
<td></td>
</tr>
</tbody>
</table>

Certain polygonal domains (e.g. [Borodin-Ferrari ’08], [Petrov ’12], [Bufetov-Knizel ’18]).

[Bufetov-Gorin ’17] Hexagon with a hole of fixed height (not simply connected).

Today: q^vol-distributed cylindric partitions and shift-mixed q^vol-distributed cylindric partitions.
Model

<table>
<thead>
<tr>
<th>q^{vol}</th>
<th>shift-mixed q^{vol}</th>
</tr>
</thead>
<tbody>
<tr>
<td>measure supported on: cylindric partitions</td>
<td>shifted cylindric partitions $=$ lozenge tilings of the cylinder</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathbb{P}(\lambda) \propto q^{\text{vol}}(\lambda)$</td>
<td>$\mathbb{P}(\lambda, S) \propto u^S q^{\text{vol}}(\lambda, S) = (u^S q^{\text{vol}})^2 q^{\text{vol}}(\lambda)$, $u > 0$, S is a vertical shift of the wall-floor interface</td>
</tr>
<tr>
<td>periodic Schur process</td>
<td>shift-mixed periodic Schur process</td>
</tr>
<tr>
<td>determinantal structure, comes from the dimer model</td>
<td></td>
</tr>
</tbody>
</table>

$h(\tau, y) := \sum_{x < y} \left[\text{there is no lozenge of type } \heartsuit \text{ at } (\tau, x) \right]$

$h(\tau, y)$ vanishes for all sufficiently negative y and $h(\tau, y) = y - S$ for all sufficiently large positive y
Define a function $\mathcal{H} : \mathbb{R} \to \mathbb{R}$ by
$$\mathcal{H}'(y) = \frac{2 \arctan \left(\sqrt{\frac{4}{t^2 y - 1}} \right)}{\pi} \mathbf{1}(0 < t^y < 2)$$
and $\lim_{y \to -\infty} \mathcal{H}(y) = 0$.

Theorem (Ahn, R., Van Peski '21)

The height function $\frac{1}{N} h_N$ of a q^vol / shift-mixed q^vol-distributed cylindric partition of width $2N$ converges in probability to the limit shape \mathcal{H} uniformly.

$p_\square = p_\Diamond$ (symmetry)

$$\mathcal{H}'(y) = 1 - p_\Diamond$$

$$\mathcal{L} = \{ (\tau, y) \in (0, 1] \times \mathbb{R} : 0 < t^{2y} < 4 \} = \{ (\tau, y) \in (0, 1] \times \mathbb{R} : y > \frac{\log 2}{\log t} \}.$$

$p_\square = p_\Diamond$ (symmetry)
Theorem (Ahn, R., Van Peski '21)

Fix $t \in (0, 1)$. Then the height function fluctuations of the unshifted q^{vol} measure converges as $N \to \infty$ to the η-pullback of the Gaussian free field on the cylinder $C = (0, \frac{1}{2}) \times \mathbb{R}/\frac{\log t}{2\pi}$ with 0-Dirichlet boundary conditions, where $\eta : \mathcal{L} \to C$ is given by

$$\eta(\tau, y) = \frac{1}{2\pi i} \log \left(t^{\tau} \frac{2 - t^{2y} + i\sqrt{4t^{2y} - t^{4y}}}{2} \right).$$

Remark: η defines the same conformal structure as the one conjectured by Kenyon-Okounkov.
A discrete Gaussian $S \sim \mathcal{N}_{\text{discrete}}(C, m)$ is the \mathbb{Z}-valued random variable defined by

$$\Pr(S = x) \propto e^{-C(x-m)^2}.$$

Theorem (Ahn, R., Van Peski '21)

Fix $u \in \mathbb{R}_{>0}$ and $t \in (0, 1)$, set $q := q(N) := t^{1/N}$. Then the height function fluctuations of the shift-mixed q^vol measure converges to the η-pullback of the Gaussian free field with a discrete Gaussian shift $S \sim \mathcal{N}_{\text{discrete}}(\frac{|\log t|}{2}, \frac{\log u}{\log t}),$

$$h(2N\tau, 2Ny) - \mathbb{E}[h(2N\tau, 2Ny)] \xrightarrow{N \to \infty} \Phi(\eta(\tau, y)) - S\mathcal{H}'(y).$$
Methods

- q^{vol} plane partitions are distributed as a certain Schur process [Okounkov-Reshetikhin '01]

- (shift-mixed) q^{vol} cylindric partitions are certain (shift-mixed) periodic Schur process [Borodin '07]
Methods

- new formulas for joint exponential moments of the height function of periodic Schur processes
- similar formulas for the joint moments, which obtained formulas for observables for periodic Macdonald processes [Koshida '20]
- similar methods for GFF convergence for random matrices and random tilings used in e.g. [Borodin-Gorin '15], [Ahn '20]

shift-mixed q^{vol}: determinantal structure, Gaussian free field WITH an additional discrete Gaussian shift component

unshifted q^{vol}: NO determinantal structure, Gaussian free field
Holey hexagon

A domain topologically equivalent to the cylinder:

Height of hole depends on tiling. To choose random tiling either
★ allow hole height to vary
★ condition random tiling on fixed hole height

Analogy:
unrestricted tilings of cylinder ⇔ tilings of holey hexagon
unshifted cylindric partitions ⇔ tilings w/ fixed hole height.
Unshifted cylindric partitions \leftrightarrow tilings w/ fixed hole height

Theorem (Bufetov-Gorin '17)

The uniform measure on tilings of the holey hexagon conditioned on fixed hole height has Gaussian free field fluctuations in Kenyon-Okounkov complex structure.

Theorem (Ahn, R., Van Peski '21)

The fluctuations of the height function of a q^{vol}-distributed cylindric partition of width $2N$ converges on the liquid region to the Gaussian free field in the Kenyon-Okounkov complex structure.
Dirichlet energy

Conjecture

For a general planar domain with a hole, the limiting fluctuations of the hole height are discrete Gaussian $N_{\text{discrete}}(C, m)$. Furthermore

$$C = \frac{\pi}{2} \int_{\zeta(L)} \|
abla g\|^2 \, dx \, dy \quad \text{(Dirichlet energy)}$$

of unique harmonic function g which is 0 on outer boundary, 1 on inner boundary.

Rmk: To be proven for some domains in [Borot-Gorin-Guionnet, in prep.].
Unrestricted tilings of cylinder \leftrightarrow tilings of holey hexagon

For shift-mixed q^vol recall independent shift S has

$$\Pr(S = x) \propto u^x q^{Nx^2}.$$

Equivalently (recall $t = q^N$)

$$S \sim \mathcal{N}_{\text{discrete}} \left(\frac{|\log t|}{2}, \frac{\log u}{\log t} \right)$$

and

$$C = \frac{|\log t|}{2}$$

is exactly the Dirichlet energy in previous conjecture for our case!
THANK YOU